A spline collocation method for parabolic pseudodifferential equations
نویسندگان
چکیده
منابع مشابه
SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملSpline collocation for convolutional parabolic boundary integral equations
We consider spline collocation methods for a class of parabolic pseudodifferential operators. We show optimal order convergence results in a large scale of anisotropic Sobolev spaces. The results cover for example the case of the single layer heat operator equation when the spatial domain is a disc.
متن کاملA spline collocation method for integrating a class of chemical reactor equations
. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...
متن کاملA Finite Element Collocation Method for Quasilinear Parabolic Equations
Let the parabolic problem cix, t, u)ut = aix, t, u)uxx + bix, t, u, ux), 0 < x < 1, 0 < / á T, uix, 0) = fix), w(0, t) = gli), ií(1, t) = giit), be solved approximately by the continuous-time collocation process based on having the differential equation satisfied at Gaussian points £,,i and £;,2 in subintervals (x,-_i, x¡) for a function l/:[0, T] —» 3C3, the class of Hermite piecewise-cubic po...
متن کاملSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2002
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(01)00401-0